Using thermo-chemicals for moisture control in the automotive industry

Giampieri A, Ling-Chin J, Ma Z, Smallbone A, and Roskilly AP Innovation Workshop

Hybrid Thermo-Chemical Technology for Heating, Cooling and Humidity Control Berlin, 16th November, 2018

Contents:

• **Background**: Why TCFs can be important for the automotive industry?

 Case study: Techno-economic analysis of a thermo-chemical system for paint shop application

Conclusions

Background: Why TCFs can be important for the automotive industry?

H-DisNet

Vehicle manufacturing process

Painting process

Objective for manufacturer: <u>Electricity</u> and <u>fuel consumption reduction</u> in the <u>paint shop</u> using available <u>waste heat sources</u>.

Current technological solution

- Air management systems used for temperature, humidity and dust control of the paint booth's supply air
- Air supply unit (ASU) treats 100% outdoor air. Process dependent on external condition
- Air regeneration unit (ARU)
 recirculates portion of air exhausted
 by paint booth (about 80-90%).
 Required cooling process is less
 dependent on external condition

Automotive plant weather condition

- Heating and humidification required most of the year.
- Few predictable days require dehumidification and cooling.

Effect of humidity on paint layer formation

An <u>inappropriate control</u> results in <u>paint defects</u>, which in turns require <u>re-working of the vehicle</u>, process that is <u>time-</u> and <u>cost-consuming</u>.

H-DisNet technological solution

van't Hoff diagram

- Moisture absorption and desorption process driven by difference in vapour pressure between air and desiccant solution.
- Significant savings in terms of electricity and fuel consumption.

Thermo-chemical system capital cost analysis

Method:

- Specific cost function was regressed.
- Characterisation strategy based on the flow rate.

Based on the regressed function, the <u>cost</u> of the system at <u>different flow</u> rates can be determined.

The regressed cost for a 100,000 m³/h system would be € 283,580.

Preliminary economic analysis

Natural gas cost € 0.02 kWh⁻¹ Electricity cost € 0.1 kWh⁻¹

Parameter	Value
ASU/ARU volume flow rate	100,000 m ³ /h
Paint booth temperature	23 °C
Paint booth RH	70 %
Working hours	5962.5 h/y
Heating ASU savings	€ 87,113.6 y ⁻¹
Humidification ASU savings	€ 21,778.4 y ⁻¹
Cooling ARU savings	€ 29,133.6 y ⁻¹
TCF system capital cost	€ 283,580
O&M TCF system cost	€ 19,850 y ⁻¹
Payback period	Lower than 3 years

Additional economic factor considering avoided vehicle reworking

Choice of TCF for the process

Dehumidification effectiveness

$$\varepsilon_{deh} = \frac{\omega_{air,in} - \omega_{air,out}}{\omega_{air,in} + \omega_{TCF,eq}(T_{TCF}, x_{TCF})}$$

 ω_{air} = air moisture content, $\omega_{sol,eq}$ = equilibrium moisture content of the TCF, it represents the minimum value of moisture content achievable with TCF

ε_{deh} for well-designed system is usually 0.7

Salt	Cost per metric ton of salt (€)
LiCl-anhydrous	7,260
LiBr-anhydrous	2,860
HCO ₂ K-anhydrous	323
CaCl ₂ -dihydrate	143

<u>Cheaper TCFs</u> with <u>lower regeneration temperature</u> and <u>moisture</u> desorption ability (CaCl₂) or <u>less corrosive</u> (HCO₂K) can be used

Additional advantages

 Concentrated TCF can be used as a <u>replacement</u> of <u>electric</u> adsorption dryers used for <u>flash-off process</u>

Additional **€ 40,000** of **electricity savings** achievable

- **Dust ability removal** of TCFs.
- Effect of humidity on **powder paint.**

Conclusions:

- 1) Energy-efficient temperature and humidity control in a paint shop can result in significant economic savings and increased paint quality.
- 2) In cold climates, simultaneous need for heating/humidification and dehumidification/cooling. H-DisNet could perform both tasks. More significant electricity and fuel savings are achievable.
- 3) A capital cost function for the TCF system valid for different flow rates was determined; payback period is lower than 3 years.
- 4) LiBr, LiCl, CaCl₂, and HCO₂K applicable in the process but CaCl₂ and HCO₂K are cheaper and suitable for lower-temperature application

Thanks for your attention